Distributed Objects

Naveen Hota

ECS Developers Workshop
30 May 1995

777777 -001-001 NH-1

Roadmap

Distributed Objects

Special Topics & Insights
Extensions in Security & Directory
An Example: Code walk through

727-PP-001-001 NH-2

Functional vs. Object Oriented
Application Development

Case: Single Address
space

 Functional:
— Function oriented
— No state information
— Thoroughly familiar
— Location is a pointer

e Object Oriented.:
— Has state and behavior
— Extendable
— Provides Encapsulation
— Inheritance, Abstraction
— Getting comfortable
— Location is a pointer

727-PP-001-001

-

Process

—>

N
-

Process

/
~

NH-3

Object vs. Distributed Object

Single address space -

Multiple address space

Proxy object Real object

Client address space Server address space

727-PP-001-001 NH-4

| N

g /|
e Process A /P. ‘ PrT ess B
. J
— I

@D @D rocpssc
- J

Multiple address space
True stateful servers
State and behavior is captured in objects

Object location is

— host, port, transport
— or interface, object identifiers
— Oor auniqgue name in the namespace

727-PP-001-001 NH-5

Distributed Objects Application

727-PP-001-001

Clear separation between the interface and
Imlementation

Isolates the application developers from low
level communicatio programming

Incremental evolution & flexibility
Location and language independent

Application logic is same irrespective of the
physical location of the real object

Share objects

Security may be an issue, but can be dealt
with.

Has some overhead.

NH-6

Evolution Path

« End Goal: CORBA (not mature today)
e Closest is OODCE

— Same paradigm
— Functional subset of CORBA in DO area
— Has some good additional features: Security, Versioning

— Migration is possible with minimal breakage (but not
transparent)

— Level of effort for migration is (relatively) low

727-PP-001-001 NH-7

Keytab File

o Start rgy edit on the desired host
by typing “rgy_edit” and do the
following:

— rgy_edit =>ktadd -p authSrPrName -f
authSrKFile.pwd

— Enter password: ****

— Re-enter password to verify: ****
— rgy_edit => ktlist -f authSrKFile.pwd
/.../Ibaltic.hitc.com/authSrPrName
— rgy_edit => quit {
NOTE: Server application must
have read access to the
Keytab file created

727-PP-001-001 NH-8

Application
Server

Client/Server Authentication

* For clients and the servers to prove their identities to
each other

o Server specifies the level of security OFFERED
— Through the SetAuthinfo() API

— Done on a per server basis (NOT on an object/interface basis)

* Client specifies the level of security DESIRED
— Through the SetAuthinfo() API

— Done on per object basis

727-PP-001-001 NH-9

Client/Server Authentication
(continued)

e SetAuthinfo API

— Authentication protocol (ex: No authentication, DCE
secret-key authentication)

— Authorization protocol (ex: Name based authorization,
PAC/DCE based authorization)

— protection level (ex: Connect level, Packet_integrity,
Packet_privacy, etc.)

* For fine grain control at the server a
Reference Monitor is used

— Force a client to request certain security levels before
servicing its call.

727-PP-001-001 NH-10

Authorization

e Checking the privileges to access a resource

— Resource can be operations, files, etc.

 Two types of Authorization

— Name based
» check done based on the name of the principal.
— PAC based

» check done based on the group to which the principal belongs
(extended one)

» (PAC - Privilege Attribute Certificate, obtained by a principle
during Login)
o Selected by specifying appropriate authorization
protocol in the SetAuthinfo()

NOTE: Name based Authorization can be used In
Legacy applications (database)

727-PP-001-001

NH-11

ACL Manager

Major security component of the server

Provides authorization functionality
— Supports ACL, which has entry/s as follows:
» entryType:key:permissions (ex: user:joe:rw)
— To check if the client is authorized to access an object/operation/...
» Reads ACL associate with object and decides privileges
Defines Access Control Permissions

— Application developer definable

— CSS by default creates 32 permissions

» 7 standard permissions - read, write, execute, test, delete, acl-
control, insert

» 25 User desired permissions - pl, p2,......, p25

Creates and associates ACLSs to objects

— Stored in memory

727-PP-001-001 NH-12

ACL Manager (contd)

* Creates and manages ACL Databases

e Supports standard interface (rdaclif) for
external system

— To edit/ manipulate ACLs

e CSS provides a class which encapsulates all
the above functionalities

NOTE: CSS will provide ACL Database
persistence

727-PP-001-001 NH-13

727-PP-001-001

ECSSec Class Functionality

ACL schema definition
— defines a set of permissions (valid within an ACL)

ACL manipulation

— through internal interfaces
— through standard external interface (ex: rdacl)

ACL database creation
— maintains a binary tree of ACLs in memory

Authorization checking

— Maps object’s ACL with client’s PAC using standard DCE
ACL checking algorithm

Provides persistent storage of ACLs

— maintains updated ACLs in persistent store
— reads ACLs back into memory when server is restarted

NOTE: Objects not in the same virtual address
space should not share ACLs

NH-14

Threads

« What are threads ?

— Light weight processes spawned and controlled by a
parent

— Each thread shares text and data with the parent
— Each thread can have private and unshared data

« Why are threads needed?

— Performance considerations and conceptual clarity
» for concurrent processing
» for servers to service multiple client requests
» for clients to make several requests concurrently

« How are threads implemented?

— In the kernel
— In the infrastructure (e.g., DCE)

727-PP-001-001 NH-15

Threads (contd.)

e Operations on threads available to the parent
Process.
— Create a thread
— Change the priority
— Change the scheduling policy
— Change run time characteristics
— Wait/kill/join with a thread

NOTE:

— Care must be taken to ensure that application code is
reentrant (thread safe and usage of thread safe
libraries)!!

— Limitations: Max number of threads per process is
platform dependent

— CSS will establish a limit of approximately 500 threads
per process

727-PP-001-001 NH-16

Time

e What is Time service?

— Manages clocks on host systems to be synchronized in a
network environment

— Provides interface to external time providers to get
reliable time

 What is provided?

— Application programmers can retrieve time information in
various formats

— Application programmers can specify a delta to be
applied to simulate clocks

727-PP-001-001 NH-17

When to Distribute Objects

 When an object needs to be accessed from
different processors

— Why?
» Performance
» Proximity of data
» Shared system

— Why not?
» Network overhead

 Make only the needed objects into DO

 Identified ~50 DOs (may go up to ~100) for
SCDO in Release A of ECS

727-PP-001-001 NH-18

727-PP-001-001

Siners

Equations_srvl \

Util_srv2

Object Instances

Host

NH-19

Multiple Servers & Instances

 Need for Multiple servers

— Performance
» Load distribution & Effective utilization of resources
» Locality (reduce network traffic)

 Need for multiple Instances in a server
— Multiple clients accessing stateful objects

e Interface design

— Conceptual
— Implementation (may need to break it for performance)

727-PP-001-001 NH-20

lterators in DOs

« What Is an iterator

— An OO mechanism to facilitate sequential retrieval of
every element of a container class not in the same virtual
address space(DOs) as the caller

e How should iterators be used

— Provide member functions to retrieve object reference to
the next element in a container class

— Client surrogate calls the “next object” method of the
container class and rebinds the client object (of the
element) with the returned object reference

~

¥
=]

727-PP-001-001 NH-21

-

Instantiation of server objects

* General solution
— Run the server objects continuously

 Drawback
— Wasteful of host resources

e Alternate solutions

— Factory
— Activation
— Customizing client stubs with the above methods

727-PP-001-001 NH-22

Factory

e How is it done ?

— Maintain another object in the same virtual address space
with the sole purpose of creating a server class on
demand.

— When instantiation is required, bind to the factory object
and request a server object be instantiated.

— The factory returns a reference to the caller for binding to
the instantiated server object

e Drawback

— Interaction between the created object and other objects
with in the server do not take advantage of co-residing in
the same virtual address space.

— Factories may not be transient objects

Solution: Embed the factory functionality in a
class that needs interaction with the created
class

727-PP-001-001 NH-23

Factories

Server Application

~

e

/

. Server
B Client

727-PP-001-001 NH-24

Activation

How is it done ?

— Create the server object and a corresponding activation
object and register them with the GSO (as an activation
object)

— Upon receiving an incoming request, GSO instantiates an
object, if not already running through the activation
object and routes the call to the actual object.

Lookup of a factory is not necessary
Suitable for stateless servers

Drawback

— Can not be used for stateful servers because the GSO
does not permit the creation of more than one instance of
any given object.

727-PP-001-001 NH-25

727-PP-001-001

Activation

Activation
Objects

~

NH-26

Customizing the Client stubs

e How is it done ?

— Specialize the base class generated by the IDL compiler
for customization and add a new constructor

— Instantiate the client object without a binding

— Instantiate the server object (through a factory) and
obtain a reference to it

— Reset the binding to the server object using the reference
obtained in the previous step

« Migration will be transparent (No factories or
lookups in the application code)

NOTE: Every client object must be specialized
from the default class generated by the IDL

727-PP-001-001 NH-27

Customizing the Server stubs

« Why is it needed ?
— IDL doesn’t support state information
— Need to add state information to the server object

— May want to add other local functionality (private
methods)

e How is it done ?

— Specialize the base class generated by IDL compiler for
customization.

NOTE: Every server object must be specialized
from the default class generated by the IDL

727-PP-001-001 NH-28

Object Passing

« Objects can NOT be passed as arguments to
Distributed Objects

— Only structures may be passed in OODCE

o Alternate ways

— Flatten the state into a byte stream(XDR) and send it and
recover it at the other end

— Convert the state into a structure and send it and recover
it at the other end

» Limitation: Converted structure is limited to have
only 1 conformant array at the end

* Future
— Included in CORBA
— Proposed for DCE1.2 (RFC 48.3 by DEC)

727-PP-001-001 NH-29

Extending Directory/Naming

727-PP-001-001

Why is it needed?

— It is needed by applications to store application specific
state information for other applications to access

— DCE provided interfaces are either too rigid (NSI) or too
cumbersome (XOM/XDS).
CSS is providing the capability for extending
the directory service through a generic and
easy Iinterface

Uses GDS/CDS to store and retrieve user
application specific information

Advantages:

— Insulates the application developer from changes in the
underlying technology

— Upward compatible with proposed XFN

NH-30

CSS Directory/Naming

Client Application

ECS Naming Interface

GDS BIND

NN

Tree Leaf

_ AttrValPair| |AttrValPair

/ o~

Attr Vall

727-PP-001-001

Namespace 1 Namespace 2

@ O

\

dopo

e}e

~—~
_—

NH-31

Directory/Naming Classes

ECSContext

— Defines the set of bindings with distinct atomic names
— Each context is associated with a namespace

Composite Name
— A nested set of contexts - a complete path
— Intermediary nodes
» list/read/add sub contexts
— Leaf nodes
» add/read/delete elements (information associated
with each composite name)
Element

— Maintains attribute value pairs
— Provides Add/Delete/Modify/Get attribute value pairs

727-PP-001-001 NH-32

Directory/Naming classes
(contd.)

e ECSAttribute

— Provides functionality to Get/Set attribute name and
type

e ECSValuelList

— A container class of values
— Provides Set/Get/Delete values

« ECSValue

— Provides Set/Get a value

NOTE: It currently uses CDS/GDS to save and
retrieve application specific information

Other namespaces can be integrated with the
provided layer

Uses Security present in the native namespace

727-PP-001-001 NH-33

Security in non RPC Environment

e The need

— In DCE, security is embedded in RPCs and easy to use by
developers

— All ECS applications may not use only DCE RPCs to
communicate

 What is provided by CSS?

— Same level of security as DCE RPCs

— Requires more involvement on the part of the application
developer

727-PP-001-001 NH-34

1 per host

(as needed)

ACLEdit

| Authorization |

Authentication

Integrity
Privacy

727-PP-001-001

NH-35

SecSnd Object Functionality

AcqguireNewCredentials
— Get credentials from DCE or renew them

SetMsgBody

— Set the application message

SetMessageFlags

— Indicate protection levels

o SetRecipient

— Indicate the recipient identity

PrepareMessage
— Transforms the message suitable for transfer

727-PP-001-001 NH-36

SecRcv Object Functionality

AcqguireNewCredentials
— Get credentials from DCE or renew them

SetlncomingMsg
— Set the received message to be decoded

GetMsgFlags

— Get protection levels

GetSenderldentity
— Get the sender’s identity

GetMsgBody

— Decode the message & verify protections

727-PP-001-001 NH-37

Code Walk-through

Frank Deluca

30 May 1995

NH-1

Client/Server Interaction

ACLEdit

NH-39

